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Representationsl

Tim van Gelder

1. Introduction

This paper considers a problem that arises at the intersection of three
very broad ideas. They are (1) that higher cognition needs compositionally
structured representations ; (2) that cognition is essentially a dynamic
phenomenon ; and (3) that neural networks provide the best modeling
environment for the study of cognition. Each of these ideas is quite
appealing, though for independent reasons. If they are all true, then,
together, they pose an inevitable problem : from the perspective of
dynamics, can we understand how neural networks can handle
compositionally structured representations ? That is, there must be, within
neural network modeling, a thoroughly dynamical way of implementing
compositionally structured representations. What will these
representations look like ?

The claim that higher cognition demands compositionally structured
representations is a key ingredient of mainstream orthodoxy in cognitive
s¢ience. It dominates the practice of most traditional cognitive modeling,
and has been vigorously defended by practitioners and philosophers alike.
The basic idea can be crudely expressed by saying that mental
representations must be like sentences ; that is, they must be complex
entities that are systematically constructed out of tokens of a limited set of
basic types. A variety of arguments have been put forward in favor of the
view that higher cognition requires compositional representations, but the
most plausible seems to be just that we have no good ideas about how
higher cognitive processes such as reasoning, planning, and language
comprehension and production might be conducted except on the basis of
the manipulation of compositionally structured representations. Such
processes appear to depend on large amounts of topical and background
knowledge about the world, at least in any interesting applications. How
can that knowledge be stored, retrieved and deployed, except in the form
of sentence-like representations ? :
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This argument for the dependence of higher cognitive processes on
compositional representations is often extended to the conclusion that
cognitive systems must have a so-called “Classical” cognitive architecture
(e.g., [Pylyshyn, 1984]]. But this extension can be resisted, as long as we
can find some way to incorporate compositionally structured
representations in non-Classical cognitive systems. This is why solving
the problem of the intersection of compositionality, dynamics, and neural
networks is an important exercise.

The second broad idea is that cognition is essentially a dynamic
phenomenon. This has two sides. The first 1s that cognition is
fundamentally a matter of cognitive processing, and that cognitive
processes are natural processes occurring in real biological systems. As
such, they take place in real fime, where this means something more than
simply that they happen “fast enough to keep up with what is going on in
the environment”, It means, also, that the cognitive processes themselves
are changes taking place in time, which is a continuous quantity best
modeled by means of the real numbers.

This rather basic point becomes interesting when we note that most
traditional computational models of cognition standardly abstract away
from the temporal nature of cognitive processes. The fine temporal
structure of real cognitive processing is seen as a mere implementation
detail ; computational models allegedly map the abstract information
processing operations that the cognitive system must go through in
performing a given task. Insofar as such models incorporate a notion of
time at all, time is merely a matter of order or sequence of operations, and
so is adequately modeled by means of the integers, which comprise the
simplest and most well known ordering. Consequently, there is a whole
dimension of modeling adequacy — tracking the fine temporal detail of
real cognitive processes — that virtually all traditional computational
models entirely ignore.

The inherently temporal nature of cognitive processing suggests that
providing adequate scientific descriptions will require a mathematical and
conceptual framework capable of dealing with continuous change in real
time, The obvious candidate here is traditional dynamical modeling using
differential equations, and its modern extension, dynamical systems
theory. The second side to the idea that cognition is essentially a dynamic
phenomenon, then, is that it is dynamics (broadly speaking) that provides
the right mathematical and conceptual tools for understanding cognitive
processes. Cognitive science has always been a diverse enterprise, and one
of the most consistently active sub-branches, if not the most prominent,
has been that of dynamical modeling. Pioneers such as [Ashby, 1952],
[Grossberg, 1988] and [Thom, 1975] have been applying dynamics to the
study of cognitive processes for decades. In recent years, following the
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famous explosion of theory and applications of nonlinear dynamical
systems theory in the 70s and 80s, rapidly increasing numbers of cognitive
scientists have been applying dynamical techniques and concepts across a
wide range of areas. Indeed, if connectionism was the most dramatic
theoretical revolution of the 1980s, it appears that dynamics is the
connectionism of the 1990s [Port & van Gelder, eds., forthcoming, 1995].

The third broad idea is that neural networks provide the most
appropriate medinm for the construction of models of cognitive processes.
In the light of recent debates, this idea needs little elaboration (see, e.g.
[Smolensky, 1988]), and so I will pass directly to the implications
accepting these ideas. _

I am not presupposing that these ideas are true ; merely that they are
broad empirical hypotheses which, given our current state of knowledge,
look attractive quite independently of one another. Now, one way of
evaluating their acceptability is to test their compatibility with each other.
If they turn out to be incompatible, then presumably one or more must be
rejected. The problem, in short, is to reconcile compositionality, dynamics
and neural networks.

Reconciling dynamics and neural networks is no great achievement.
Neural networks standardly are dynamical systems governed by
differential equations, and increasingly, dynamical systems theory is the
mathematical framework of choice for describing their behavior. The
naturalness of the fit between neural networks and dynamics has been
exemplified in Grossberg’s models of various aspects of cognition.
Reconciling neural networks and compositionally structured mental
representations is also not particularly problematic. Plenty of connectionist
models of language processing have constructed complex representations
of entities such as sentences by combining, by one means or another,
patterns corresponding to the constituents of those entities. The infamous
Fodor & Pylyshyn's criticism of connectionism [Fodor & Pylyshyn, 1988]
was not that connectionists could not incorporate compositional
representations in their models ; rather, it was that they can, and in order to
be adequate to cognition they must, but in doing so their models become
mere implementations of the Classical approach. However, subsequent
work has demonstrated beyond any question that connectionist models
can utilize compositionally structured representations without amounting
to mere implementations (see, e.g. [van Gelder, 1990]). How this is
possible turns on the analysis of the concept of compositionality, an issue
addressed in more detail below.

The trouble is that there is very little overlap between that neural
network research which is truly dynamical, and that research which
handles compositional representations. Those neural network researchers
who bring the concepts and tools of dynamics to bear on the study of
cognition with any degree of sophistication are not focusing on those
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problems of higher cognition which appear to demand sentence-like -
representations, and vice versa. The real difficulty, then, appears to be
reconciling compositionality and dynamics within a neural network
framework. In a way, this should not surprising. Dynamics offers a vast
conceptual and mathematical armory, but concepts such as representation
and syntactic structure are not part of it. What we are asking, in effect, is
that some central concepts of one large research framework — that of
classical computationalism — be somehow reconstructed within another
very different framework.

In the final part of this paper I will briefly discuss one broad approach
to handling this problem that has been under independent development by
the French philosopher Jean Petitot and the American connectionist
linguist Robert Port (and perhaps others). The compositional
representations that are constructed within this approach, however, are
radically different from the more typical examples found in orthodox
cognitive science. Consequently, before describing this method, which can
be termed “attractor chaining”, I will explore the concept of
compositionality itself, and highlight some of the very different ways in
which compositionality can be implemented.

2. Kinds of Compositionality

Consider some of the obvious differences between a printed sentence
and a spoken utterance of the very same sentence. Both contain the same
words, but in the printed sentence they are static ink configurations, while
in the utterance they are temporally extended sound patterns. In the printed
case, words are combined by juxtaposition in space ; int the utterance, by
juxtaposition in time. The printed words are combined in a very discrete
way — there 18, quite literally, space between each — and all occurrences
of a given word are effectively identical, whatever words happen to
surround them. In the utterance, by contrast, juxtaposition is not discrete
and context free ; words flow into each other, and their physical shape is
affected by their neighbors.

Printed and uttered tokens of the very same sentence, then, are
physically constructed or built up in quite different ways. One way 1o put
this is that the two tokens exhibit very different kinds of compositionality,
despite being syntactically and semantically identical. (Note that this use
of the term “‘compositionality” is not to be confused with another very
common use, in which the term is used to refer to the kind of situation in
which basic constituents make approximately the same semantic
contribution in every context in which they appear.)

This point has two very important consequences. First,
compositionality itself comes 1n at least two, and possibly many, different
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kinds. Second, the concept of compositionality can be a subject of study,
quite independently of syntax and semantics. Whereas syntax and
semantics focuses on a language in the abstract, the study of
compositionality focuses on particular, concrete implementations. How
many kinds of compositionality are there 7 What are the fundamental
issues 7 And what kinds of compositionality are typically found in
mainstream artificial intelligence, in neural network research, and in
natural cognitive systems ?

A representation is compositionally structured when, roughly, it is
systematically constructed out of tokens of a limited set of basic
compoundable units. Technically, it is more appropriate to say that a
representation is compositional if it stands in certain constituency
relations ; that 1s, there is ;

(a) some finite set of primitive types, realizable by actual physical
tokens ;

(b) a possibly unbounded number of compound types, realizable by
actual physical tokens ; and,

(c) a set of abstract constituency relations defined over these primitive
and compound types.

Any particular token of a representation is compositional just in case,
by virtue of belonging to a certain type, it stands in appropriate
constituency relations, i.e., can be said to have constituents. (For more
detailed discussion of this approach to compositionality, see [van Gelder,
19901.)

The point of specifying the concept of compositionality in this abstract
way is to distance us as much as possible from the standard examples of
compositionality, paradigms of which are symbolic structures such as
printed sentences and LISP expressions. The printed sentence and the
spoken utterance of the same sentence are both compositional
representations, since they are both tokens of the same type, and that type
stands in abstract constituency relations ; however, they realize that
compositionality i very different ways. To understand syntax is to
understand the abstract hierarchical structure of constituency relations
among types ; to understand compositionality is to understand the various
different ways in which concrete tokens actually realize those types and
their constituency relations.

There are at least six key issues in understanding compositionality. It is
possible to think of these metaphorically as the basic dimensions of an
abstract space of possible kinds of compositionality. These six issues are ;

1. Static vs. Dynamic
2. Digital vs. Analog
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3. Arbitrary vs. Non-Arbitrary

4. Mode of Combination : Concatenative vs. Non-Concatenative
5. Static vs. Temporal Combination

6. Syntactic Conformity,

Ideally, these dimensions carve up the space of possible kinds of
compositionality in the most theoretically revealing way ; to extend the
metaphor, they should be something like the “principal components™ of
that space.

The first three issues concern properties of the tokens of the primitive
types, which I will call symboloids, in order to emphasize that they
include, but are not restricted to, standard symbols such as LISP atoms or
printed words. The second three concem the way in which these basic
tokens are actually combined in order to form tokens of complex types.

2. 1. Properties of Symboloids

Consider an individual word token from a particular printed sentence
of English. It is a paradigm example of symbol (i.c., a particular kind of
symboloid). Some of its obvious properties include the fact that it sits still
on the page for a long time ; that it is straightforward to recognize the
symbol type to which it belongs ; and that it has meaning or semantic
significance, yet its physical structure bears no interesting relationship to
that meaning, These relatively obvious properties correspond to the first
three dimensions of compositionality.

It is worth pausing to mention that it can often be quite difficult to pin
down the primitive types of a given compositional scheme of
representation. For example, linguists, Al theorists and high school
teachers all usually assume that individual words are the primitives of
English. This is satisfactory as a first approximation. But Bolinger among
others has frequently pointed out how difficult it is to nail down the actual
list of the particular items that have just the right properties to count as the
primitives [Bolinger, 1975]. Natural language is not just a set of
morphemes plus rules of syntax. Speakers use and krow linguistic
fragments that come in many sizes : from submorphemic ideophones 1o
words, idioms, and Bolinger’s “collocations”, as well as clichés and even
entire sentences and paragraphs of boilerplate (as in genres like wills and
academic recommendation letters). The nature of many of these
mysteriously constrained yet flexible lexicalized units lies well beyond the
grasp of current representational schemes employed in linguistic theory,
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Nevertheless, in what follows I will be proceeding on the assumption
that the basic types have been already adequately identified for any
compositional scheme under consideration.

(a) Static vs. Dynamic

Any representation, and any symboloid, is a concrete physical item (an
ink mark, a sound wave, a collection of electronic bits, a pattern of neural
firing, etc.). It counts as a token of a particular type in virtue of some kind
of distinctive physical configuration or shape. We can think of this
distinctive configuration as a matter of change along key physical aspects
of the representation. Thus, a printed token of the word cat exhibits
change in the way ink is placed on the page, change that would be
registered by a scanner as it moved along the page. It is precisely the
details of this spatial change which makes it different than a token of the
word dog. Notice that, by contrast, an instance of cat typically exhibits no
significant change in physical configuration from one moment of time to
the next. This is what I mean by saying that it “sits still”, or is a static
token. _

Compare this with an uttered token of the same word. In this case, it is
variation in frequency and amplitude of a sound wave over time which
determines its type-identity ; change over space is irrelevant. This is an
example of a dynamic primitive, The key feature of a dynamic symboloid
or representation is that change over time is essential to type-identity. It
follows that, in order to determine to which type the entity belongs, you
have to wait long enough for its distinctive change to unfold. In the case of
a static symboloid or representation, by eontrast, you have (in principle, at
least) enough information at any instant to determine type-identity.

Printed English words, then, are static symboloids, while spoken
words are dynamic symboloids. One way t0 summarize the difference is
1o say that dynamic symboloids, but not static symboloids, happen in time.

(b) Digital vs. Analog

A key feature of most standard compositional schemes of
representation is that they are digital. By this I mean that it is possible to
produce symboloids in the scheme, and determine the type identity of any
given symboloid with complete and unambiguous success. Another way
to put this is that the symboloids are such that the reading and writing
processes are positive [Haugeland, 1985].

A classic example of a process that can succeed positively is scoring in
basketball ; the ball either goes through the hoop or it doesn’t. There has
never been a semi-basket in the history of basketball. Similarly, in
standard symbol systems, such as LISP machines, the most basic
production, identification and transformation processes can be carried out
with unquestionable success. Barring malfunction, the system can always
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tell whether the symbol in its buffer is foo or not ; there is simply no
question of its being somewhat foo. Obviously, printed English is also a
digital scheme, given printing presses or laserwriters to produce the words
and normal human readers to type-identify them.

An analog scheme is one that is not digital ; analog symboloids are
ones that cannot be produced and identified positively. This is not to say
that they cannot be successfully produced and identified. Consider trying
to determine who won a javelin throw by visual inspection. Most of the
time, the test will indicate a winner, but sometimes the difference between
the throws will be so small that it will be difficult to choose. Unlike
basketball scoring, javelin competition is analog. Similarly, spoken
English is analog, since, although it is usually possible to produce an
identifiable token of any given word, success is always more or less rather
than perfect. It makes sense, for example, to say that a given uttered sound
was the word hardest because it sounded rather more like hardest than
hottest.

Analog compositional schemes are, increasingly, cropping up in
connectionist work. Consider, for example, Pollack’s RAAM architecture
[Pollack, 1990]. If one trains such a network to represent many sequences,
the representations of various stack states become so closely packed in the
activation space of the hidden units that the network cannot positively
distinguish one representation from another very close to it in hidden unit
activation space. “Attractor chaining” style compositional representations,
to be discussed below, are schemes in which the symboloids themselves
arc analog rather than digital.

Intuitively, whether a set of entities is digital or analog in this sense has
much to do with whether or not they are discrefe rather than continuous.
Thus it seems natural to say that printed words are discretely different,
while the range of forms of spoken words is more continuous. But what
does this actually amount to ? Roughly speaking, in this context, a set of
entities 1s continuous if, between any two entities in the set, there is
another enfity which also belongs to the set. A discrete set is one such that
there are large gaps between entities. Put differently, a continuous set is
densely packed into the space of possible entities of that kind, while a
discrete set is sparsely packed into it. However, it turns out that it is
difficult to give any more precise formulation of this intuitive idea which
really does effectively distinguish those schemes of compositional
representation which intuition counts as discrete and those which it
regards as more continuous. For this reason, together with the fact that
digital vs. analog is clearly more significant from the point of view of the
functional properties of a scheme of representation, I choose not to
emphasize discreteness vs. continuity as a dimension of symboloids.
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(c) Arbitrariness

I have noted already that individual symboloids belong to the type that
they do in virtue of their distinctive physical configuration or makeup. The
next dimension is a matter of how symboloids relate to each other. Are
symboloids related in their physical configuration, or are they completely
arbitrary relative to each other 7 A particularly useful way to ask this
question is : does fixing the physical configuration of one kind of
symboloid in the scheme in any way constrain the configuration of any
others ?

Most words of English, written or spoken, are basically arbitrary in
this sense. Thus, a printed token of the word cat bears no interesting
relationship, in its physical configuration, to a printed token of the word
dog, over and above the fact that they are both ink marks constituted by
smaller marks corresponding to letters. In particular, fixing the physical
configuration of one word leaves the physical configuration of the other
almost completely unconstrained (which is just to say that we could have
used a quite different word in its place ; the choice is completely arbitrary).
Likewise, the sound [khaet] bears no interesting physical relationship to
- the sound {dog].

The issue of the arbitrariness or non-arbitrariness of symboloids gets
particularly interesting when a further complicating factor is introduced :
the meaning of the individual symboloids. Symboloids standardly have at
least two fundamentally different kinds of properties. On one hand, there
are their physical properties. On the other, there is the meaning or
semantic significance which each symboloid has and which contributes to
the meaning of the compound representation that is formed out of it.
Consequently, we can ask whether there is any interesting relationship
between these two kinds of properties. Does the physical makeup of a
given symboloid in any way reflect its semantic properties ? If it does, that
symboloid is not arbitrary with respect to its meaning ; and since meaning
is constraining physical configuration, different symboloids with different
meanings must exhibit corresponding differences in their physical
configuration, and hence the symboloids are not arbitrary with respect to
each other.

Clearly, virtually all written or spoken words of English are
semantically arbitrary ; a printed token of cat bears no interesting
relationship to feline mammals over and above the semantic one. The
same is true of symbols in any standard computational system. This is one
deep source of the anxiety that many people feel about so-called
“grounding” in computational systems. If the basic symbols are essentially
semantically arbitrary, how can they have any real or intrinsic meaning ?
Surely, it is often thought, symboloids in real cognitive Systems must

somehow reflect their meanings in their formal configuration more
directly.
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Some connectionist compositional schemes do utilize semantically
non-arbitrary symboloids. For example, in McClelland and Kawamoto's
model of case role assignment [McClelland & Kawamoto, 1936], input
sentences are built out of vectors corresponding to distinct words, and
those vectors themselves are essentially just lists indicating the presence or
absence of microfeatures in the designated objects. Therefore, since the
actual vector that is used to represent a given object (e.g., a hammer] is
constrained by the features of hammers, these vector symboloids are
semantically non-arbitrary. (Of course, the vector-elements corresponding
to microfeatures are semantically arbitrary. This just shows that it is
possible to construct non-arbitrary representations out of arbitrary
components — which is exactly what happens in natural and formal
languages when non-arbitrary sentences are constructed out of arbitrary
word components.)

2. 2. Properties of the Manner of Combination

Compositional representations are obtained by combining symboloids
to obtain compound wholes in accordance with the abstract constituency
relations. It is natural and useful (though sometimes a little misleading) to
think of this in terms of a mechanical process, in which actual individual
symboloids are put in one end and out the other comes a compound
representation. We can then ask : how does this process work 7 What does
it actually do in combining symboloids to obtain compound
representations ?

(d) Mode of Combination

An obvious feature of printed sentences of English is that they are
made up out of individual words, and that each word appear§ in the
sentence exactly as it would if it were alone on the page. Words are taken
off the shelf, as it were, and appear totally unaltered in the resulting
sentence. A less obvious feature of spoken sentences of English is that this
is not, in general, true : when a word appears in a senience, it typically
ends up with a somewhat different shape, depending on the words it is
surrounded by, than it has when spoken alone. For example, observe the
subtle changes in the pronunciation of the [t] — and hence of the whole
word “cut” — in cut Paul, cut some and cut out.

Further, somewhat surprisingly, it is possible to systematically
generate compound representations out of symboloids in a way that not
only changes, but apparently completely destroys those symboloids.
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An appropriate term for the kind of combination characteristic of
printed sentences is concatenation. Roughly, a mode of combination is
concatenative just in case it preserves the constituent symboloids in the
resulting compound representation ; if, in other words, one can literally
point to the constituent symboloids in the compound whole. Since this is
true for both printed and uttered sentences of English, we need to go on to
distinguish two different kinds of concatenation :

(a) Pure concatenation, in which the process of combination leaves
symboloids utterly unchanged. All standard computer languages and
representational schemes in classical cognitive science utilize pure
concatenation.

(b) Context-sensitive concatenation, in which each constituent
symboloid is recognizably present in the resulting compound, but its
shape has been altered by the very process of combination, typically in a
way that systematically reflects its context.

A non-concatenative compositional scheme is one in which symboloid
constituents do not literally appear in the compound representations, even
though they may have been input into the combination process. Pollack’s
RAAM architecture, already mentioned, is one relatively well-known kind
of connectionist model which forms compound representations by non-
concatenative combination.

In models with this architecture, basic symboloids take the form of
vectors on the input layer, and they are systematically combined by the
network to form compound (stack) representations in the hidden layer.
The symboloid constituents are not literally present in the compound
representation ; if you examine the activation vector which is the
compound representation, you will not find any instance of the vector
which was the input symboloid. Nevertheless, the compound
representation systematically reflects, in its formal structure, its actual
constituency relations. This latter point can be shown in two ways. First,
further processing in the RAAM network can actually recreate the
symboloid constituents. Second, the compound representations can be
used in further processing which is systematically appropriate to its
constituent structure (e.g. [Chrisman, 1991} ).

(e) Static vs. Temporal Combination

In printed sentences of English, combination is by spatial
juxtaposition, and all constituent symboloids are present simultaneously
for the entire period of the existence of the whole printed sentence. In

uttered sentences, by contrast, symboloids are combined temporally ; one

follows another, and none are present at the same time. The first kind of
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combination, in which all constituent symboloids are simultancously
present, is called static combination, while combination by temporal
suCcession 18 dynamic.

Note that dynamic symboloids and dynamic combination are two
quite independent properties of compositional representations. The first
concerns the nature of the symboloids themselves, the second concerns the
way symboloids are combined. Though it is quite natural for dynamic
symboloids to be combined dynamically (as in speech) and for static
symboloids to be combined statically (as in print), other combinations are
possible ; thus, dynamic symboloids can be combined statically (a musical
chord), and vice versa (as when printed words appear sequentially on a
screen ; it is their temporal succession which forms a sentence).

(f) Syntactic Conformity

When basic tokens are combined to form compound wholes, to what
extent are the syntactic rules of the scheme observed ? A standard
assumption is that representations in a compositional scheme are, by
definition, grammatically well-formed, i.e., constructed in strict
accordance with cerfain syntactic rules. Any combination of symboloids
which violates the syntactic rules is junk or symbol salad. However, it is
often more useful to regard certain combinations as representations
belonging to a given compositional scheme even if they violate some
syntactical rules. Many if not most utterances of everyday spoken English
are not grammatically well-formed (in the sense that their utterers would
wince and then edit them if given an opportunity to examine their own
speech closely), yet they are still adequate for representational and
communicative functions. Their utility does, however, seem to presuppose
at least some general or loose conformity to the syntax of English. The
claim is that there is a rough spectrum of cases between those symboloidal
schemes in which szrict conformity is observed (e.g., programming
languages, printed English), from schemes in which only loose conformity
is sufficient (e.g., spoken English). It is possible that, insofar as there are
compositional representations underlying general cognitive performance,
these representations will, like spoken language, exhibit only loose
conformity to any relevant syntactic rules.

The theoretical utility of the six dimensions outlined so far is
illustrated by the following table which compares five different kinds of
compositional representation : sentences of spoken and printed natural
language, the representations found in a paradigm classical Al program,
Hearsay 2 [Erman et al., 1980] , and two kinds of connectionist schemes,
RAAM networks and Port’s dynamic auditory recognition model (to be
described on the opposite page).
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Spoken  Printed RAAM  Dynamic
Natural  Natural Hearsay2  [Pollack, recognition
Language Language 1990]  [Port, 1990]
Static vs.
Dynamic Dynamic Static Static Static Dynamic
Symboloids
Analog vs.
Digital Analog Digital Digital Andlog Analog
Arbitrary Arbitrary  Arbitrary  Arbitrary Non- Non-
arbitrary arbitrary
Mode of Context- Non- Context-
Combination Sensitive Pure Pure concatenative  sensitive
Static vs.
Temporal  Temporal Static Static Static Temporal
Combination
Syntactic
Conformity  Loose Strict Strict Strict Loose

Table 1. A comparison of five different schemes of compositional
representation along six dimensions of compositionality.

Note that each dimension separates these five kinds ronghly evenly
into different groups. Note also that printed English and the
representations in the classical Al system, Hearsay 2, share exactly the
same properties, and that spoken natural language and the representations
in Port’s dynamic recognition model (columns 1 and 5) are also highly
similar, This suggests that these two clusters of implementations of
compositionality are in fact natural kinds. When compositional schemes of
representation are developed, it is natural on one hand to have static,
digital and arbitrary symboloids combined statically by pure concatenation
in strict syntactic conformity ; on the other hand, it is natural to have
dynamic, analog symboloids temporally combined by context-sensitive
concatenation and in loose syntactic conformity. I will describe the first
kind of compositionality, characteristic of printed natural language, as
symbolic, and the second kind, characteristic of spoken language, as
dynamic.

As mentioned above, these six properties of implementations of
compositionality can be thought of as dimensions of a large space of
possible kind of compositionality. While research in cognitive science has
sampled representational formats from various regions of this space,
clearly it is generically symbolic implementations of compositionality that
have been dominant. In the third section of this paper I will be suggesting
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that compositionality, dynamics, and neural networks might best be
reconciled by means of dynamic compositionality.

3. Dynamic Compositionality in Neural Networks

Paul Smolensky once characterized the problem of connectionist
representation as that of finding an appropriate mapping from the set of
entities that one wishes to represent into a vector space [Smolensky, 1990,
p. 168]. If the entities to be represented are symbolic structures, then the
problem is to find a mapping from the set of those symbolic structures into
the vector space. The vectors that are the output of this mapping can then
be seen as compositionally structured representations themselves.

Why is this mapping into a vector space ? Well, obviously, because
these vectors correspond to the pattern of activity over the neural units of
some connectionist network at a given time. Note that a pattern of neural
activity, in this sense, is a stafic representation. Change over time is not
essential to the type-identity of this representation. Only the particular
distribution of activity values over the units at a time determine what
representation you have. The changes that occur over time as the network
states evolve are processing of representations ; they are transitions from
one representation to the next.

If we consider neural netwoiks as dynamical systems, then a pattern of
activity across the network is the state of the system at a given pomt in
time. The notion of the state of a system is the most elementary concept of
dynamical systems theory. Indeed, many, perhaps most connectionists
who have concepiualized the problem of representation as that of finding a
mapping simply into states of the system have then gone on to study those
representations and their transformations in largely non-dynamical way,
paying only lip-service to the idea that their networks are dynamical
systems,

From the dynamical systems perspective, the more general problem of
neural network representation is to find an appropriate mapping from the
entities to be represented into some set of dynamical objects existing in a
neural network system. At the outset, these objects might be anything
specified by means of the conceptual repertoire of dynamical systems
theory. In practice, proposals have dealt only with system staftes,
trajectories, and attractors.

A well-known alternative to taking network representations to be
simply system states is to take them to be fixed point attractors. Hopfield
networks are a standard example ; the local minima of the energy function
of such networks are fixed point attractors, and the network comes to
represent a given mput by taking that input as its initial conditions and
settling into the attractor into whose basin of attraction those initial
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conditions fall [Hopfield, 1982]. This approach may be adequate for
certain kinds of problems, but there is a very serious difficulty confronting
anyone wanting to use this approach to develop a scheme of
compositional representations. The problem is the essentially productive
nature of compositional schemes. The point of having a compositional
scheme is to provide a potentially unbounded set of representations that
nevertheless bear systematic structural similarities to one another. If
representations are 1o be fixed point atfractors of a network dynamical
system, then we need a network whose dynamics is sufficiently complex
that it already has an arbitrarily large number of distinct fixed point
attractors, one for each compound representation. As far as I know, there
are currently no practicable proposals for such a system.

The deep problem here, in short, is to find a way to incorporate the
productive nature of compositional schemes of representation into a
genuinely dynamical network framework.

A radical approach is to reject the standard connectionist paradigm in
which representations are conceived as points in network activation space,
and to think of them instead as trajectories : that is, as essentially
temporally extended, dynamic entities. Further, one should not suppose
that the network dynamics has every possible compound representation
somehow already pre-configured ; rather, the network dynamics must
provide the resources by means of which arbitrary compound
representations can be constructed.

One method of doing this is what Jean Petitot calls “atiractor syntax”
[Petitot, forthcoming, 1995] and is also known as “attractor chaining”.
Consider a dynamical system with certain state variables and parameters.
Change in system state is governed by its evolution equations which
depend on system parameters. Another way to put this is that the dynamics
of the system is fixed by the current specification of the system
parameters. We can thus think of the parameters as controlling the
behavior of the system. For any given set of parameter specifications the
system possesses a certain landscape of attractors. As control parameter
specifications vary, this landscape changes also. Significant qualitative
changes in the attractor landscape are known as bifurcations. The essence
of attractor chaining is to take the representation of a complex structure o
be the trajectory that results as the state of the system evolves under the
influence of a changing attractor landscape. Compositional structure is
imposed on the trajectory by bifurcations that occur as control parameters
vary.

Currently the most mathematically sophisticated treatment of the
attractor chaining approach is that under development by Jean Petitot. A
dramatic change in system state as the system undergoces a bifurcation is
known as a catastrophe. René Thom developed the mathematical theory
of catastrophes and suggested the application of this theory in many
domains including linguistics [Thom, 1975, 1983]. Petitot is engagéd in
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Figure 1 caption

A schematic illustration
of a trajectory formed
under the influence of a
changing dynamical

landscape. The points
A, B and C represent
the location of a single
global attractor r
corresponding
parameter settings. The
system state drifts in the
direction of the global
attractor as long as it is
active. The temporally
extended trajectory
itself is the
compositional
representation. The
axes are the first and
second princi,
components of the
system state-space.
From [van Gelder &
Port, inpressj. For
more detailed
explanation, see [Port
& Cummins,
forthcoming, 1995].

Tim van Gelder

combining the mathematics of catastrophe theory with Langacker’s
cognitive grammar [Langacker, 1987] in a neural networks framework.

A more standard connectionist approach is work by Bob Port and his
students on dynamic recognition for auditory sequences ( [Anderson &
Port, 1990}, [Port & Cummins, forthcoming, 1995], [Port, 1990] ). In this
work, a simple recurrent network is trained to recognize auditory
sequences. The network is a dynamical system which, at any given time,
has a single global point attractor whose location is determined by the
current setting of the control parameters. The system state is always
heading in the direction of this point attractor ; if there is no change in the
parameters, it will settle into that point. Things get interesting when the
location of the current global attractor is changed by variation in the
control parameters. The state of the system is pulled first in one direction,
then another. The resulting trajectory reflects in its temporal structure the
sequence of fixed point locations. Distinctive trajectory shapes correspond
to each such sequence (see Figure 1, below).

Recognition
PC2 Region for
L~ AABBCC
Recognition
Region for
BBAACC Teeet
1</
PC1
Figure 1

How are these trajectory-forming parameter changes actually
implemented ? The Port recurrent network model has an mput layer (see
Figure 2, on the opposite page). A pattern of activation across this layer
corresponds to the acoustic spectrum as the network is exposed to another
clement in the auditory sequence. In gaining a truly dynamical
understanding of how these networks work, however, it is crucial not o
think of the relationship between the input layer and the recurrent network
in traditional connectionist terms. It is a mistake to see the input pattern as
transformed nto another pattern in the recurrent network. Rather, the
activation levels of the input layer units are parameters which subtly
influence the dynamics of the recurrent network considered as a stand-
alone dynamical system. The input patten does not become another
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pattern across the network units ; rather, it shapes the way the state of the
recurrent network evolves by molding the dynamical landscape.

hidden nodes
{untrained)
M

output node
(trained)

- frequency =3 -~

- -
- -
-

Figure 2

The Port work has focused on perception of simple auditory
sequences. It is not yet anything like a practical general solution to the
problem of incorporating compositional representations in network
dynamical systems. It is however a modest implementation of the attractor
chaining approach to constructing complex representations. It therefore
provides a useful prototype for the construction of general schemes of
dynamical compositional representation. In this prototype, representations
are trajectories systematically constructed out of basic compoundable
units. Those basic units are nothing like the static, context-free symbols of
standard implementations of compositional representation. Rather, they
are themselves trajectory segments — stages of processing in which the
system state evolves in the direction of a particular global attractor. The
compositional representation is the context-sensitive, temporal
concatenation of these trajectory segments. ‘

In general, the kind of compositional representation found here 1s
much more similar to spoken natural language than it is to printed natural
language or to LISP structures. In order to see these entities as
compositional representations — and, more generally, in order to
understand how dynamics, compositionality and neural networks might be
combined — we must have a suitably enriched conception of
compositionality and how it can be implemented.

Research School of Social Sciences
Australian National University (Canberra ACT 0200 Australia)

vg@coombs.anu.edu.au
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Figure 2 caption

The architecture of the
Port dynamic auditory
recognition model.
Each tone inan
auditory sequence is
input as a pattern of
activation across the
input nodes. Activation
levels at this layer
function as parameter
settings controlling the
dynamics of the main
system, a fully recurrent
network. As a sequence
of tones is input, the
attractor landscape in
the main system
changes; the activation
trajectory then reflects
the structure of this
sequence ; from [van
Gelder & Port, in
press]. For more
detailed explanation,
see [Port & Cummuns,
forthcoming, 1995].
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