ÉTIENNE BRUNET et LAURENT VANNI
Résumé : Les problèmes de paternité ou de datation peuvent être abordés avec les moyens habituels de l’histoire littéraire, mais aussi en recourant aux ressources de la statistique et de l’informatique. Diverses mesures intertextuelles ont été proposées pour tenter de distinguer les distances intra (entre les textes d’un même auteur) et les distances inter (entre les auteurs). Malheureusement aucune jusqu’ici n’a pu prétendre au rang de juge suprême, comparable à l’ADN dans les recherches de paternité ou de criminalité. L’Intelligence artificielle peut-elle jouer ce rôle? C’est l’objet de la présente étude, menée conjointement dans deux corpus. Dans le premier, on aborde le roman au XXème siècle en proposant à l’algorithme du Deep Learning un panel de 50 textes et de 25 écrivains (parmi lesquels Roman Gary et Émile Ajar). Il s’agit de reconnaître les textes qui ont le même auteur. Là où les méthodes classiques se trompent une fois sur trois, le Deep Learning réussit l’épreuve sans faillir. Fort de cette réussite, le même algorithme est appliqué au théâtre classique. La conclusion est catégorique : Racine, Corneille et Molière se distinguent parfaitement sauf dans deux cas (Don Garcie et Les Plaideurs) où le genre vient brouiller la signature. Le présent article s’interroge sur les mécanismes mis en œuvre dans le Deep Learning. Un développement plus étendu est prévu dans une publication ultérieure.